

Iridoids from *Avicennia marina*

Kamel H. Shaker^a, M. Hani A. Elgama^b, deceased and Karlheinz Seifert^{a,*}

^a University of Bayreuth, Organic Chemistry I/2, NW II, D-95440 Bayreuth, Germany.
Fax: 49-921-555358. E-mail: karlheinz.seifert@uni-bayreuth.de

^b National Research Centre, Laboratory of Natural Products, Dokki, Cairo, Egypt

* Author for correspondence and reprint requests

Z. Naturforsch. **56c**, 965–968 (2001); received August 27/September 12, 2001

Avicennia marina, Iridoids, Geniposidic Acid

Three new iridoid glucosides, 10-*O*-[(*E*)-cinnamoyl]-geniposidic acid, 10-*O*-[(*E*)-*p*-coumaroyl]-geniposidic acid, 10-*O*-[(*E*)-caffeooyl]-geniposidic acid and the known iridoid glucoside, 2'-*O*-[(*E*)-cinnamoyl]-mussaenosidic acid have been isolated from *Avicennia marina*. The structures were determined primarily by NMR spectroscopy. The assignment of NMR signals was performed by means of ^1H - ^1H COSY, HMQC and HMBC experiments.

Introduction

Iridoids are very common in the plant family of Verbenaceae. The genus *Avicennia* belongs to the family Verbenaceae and can be separated into eight species, three in the West Africa/America area and five in the Indo-Pacific/East Africa area (Bousquet-Melou and Fauvel, 1998). Recently, *Avicennia marina* was divided into three subspecies *A. marina* ssp. *australisica*, *A. marina* ssp.

eucalyptifolia and *A. marina* ssp. *marina* (Everett, 1994). The bark, leaves and fruits of *A. marina* are used in the folk medicine for treatment of skin diseases (Fauvel *et al.*, 1993). Previously, flavonoids (Sharaf *et al.*, 2000), fatty acids, sterols and hydrocarbons (Wannigama *et al.*, 1981, König and Rimpler, 1985) have been isolated from *A. marina*. The iridoids geniposidic acid, 10-*O*-(5-phenyl-2,4-pentadienoyl)-geniposidic acid, mussaenosidic acid, 2'-*O*-[(*E*)-cinnamoyl]-mussaeno-

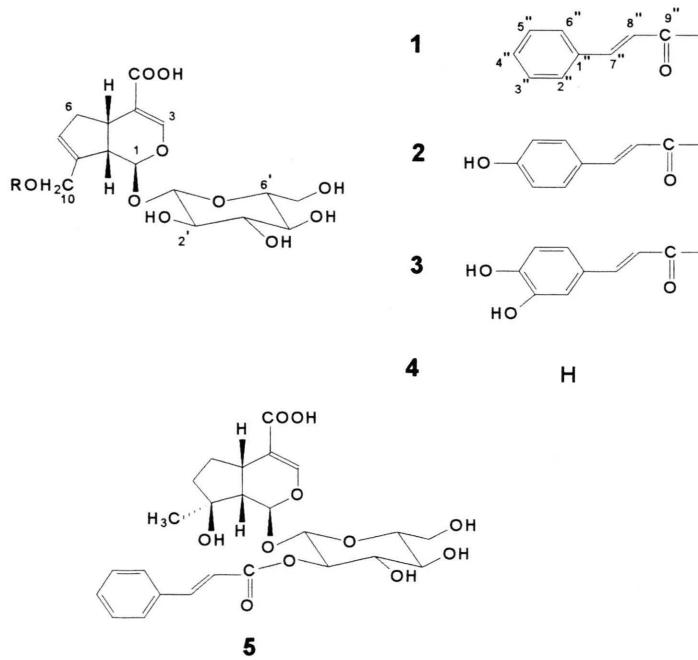


Fig. 1. Iridoids from *Avicennia marina*, 10-*O*-[(*E*)-cinnamoyl]-geniposidic acid (**1**), 10-*O*-[(*E*)-*p*-coumaroyl]-geniposidic acid (**2**), 10-*O*-[(*E*)-caffeooyl]-geniposidic acid (**3**), geniposidic acid (**4**), 2'-*O*-[(*E*)-cinnamoyl]-mussaenosidic acid (**5**).

sidic acid and 7-*O*-(5-phenyl-2,4-pentadienoyl)-8-epiloganic acid have also been obtained from this plant (König and Rimpler, 1985). In this paper we describe the isolation of three new geniposidic acid esters **1–3** and the known 2'-*O*-[(*E*)-cinnamoyl]-mussaenosidic acid (**5**) from *A. marina* (Forsk.) Vierh.

Results and Discussion

The butanol extract of the whole plants of *A. marina* was obtained as described in the experimental section. The chromatographic separation of the butanol extract was achieved on silica gel columns. The elution was performed with CHCl_3 , $\text{CHCl}_3\text{--MeOH}$, $\text{CHCl}_3\text{--MeOH--H}_2\text{O}$ with increasing amounts of MeOH and H_2O . Further purification was carried out by MPLC (RP-18 material, silica gel), followed by Sephadex LH-20 column chromatography to give the pure iridoids.

The LSI mass spectra of **1–3** exhibited the $[\text{M} - 1]^-$ ions at *m/z* 503 (**1**), 519 (**2**) and 535 (**3**) which together with ^1H and ^{13}C NMR data allowed us to propose the molecular formulas $\text{C}_{25}\text{H}_{28}\text{O}_{11}$ (**1**), $\text{C}_{25}\text{H}_{28}\text{O}_{12}$ (**2**) and $\text{C}_{25}\text{H}_{28}\text{O}_{13}$ (**3**). The fragment ions at *m/z* 341 (**1**), 357 (**2**) and 373 (**3**) show the loss of a hexose moiety $[\text{M} - 1 - 162]^-$.

The ^1H and ^{13}C NMR spectra of **1–3** revealed the esterification of geniposidic acid (**4**) with (*E*)-

cinnamic acid, (*E*)-*p*-coumaric acid and (*E*)-caffeoic acid, respectively. The ^1H downfield shifts of the both geniposidic acid signals 2H-10 in **1** ($\Delta\delta$ +0.62, +0.68), **2** ($\Delta\delta$ +0.61, +0.68) and **3** ($\Delta\delta$ +0.60, +0.67) (Table 1) in comparison with **4** (δ 4.26, D_2O) (Cameron *et al.*, 1984) indicated the acylation in position 10 of **4**. This acylation of **1–3** caused also the ^{13}C downfield shifts of the C-10 signal in **1** ($\Delta\delta$ +2.8) and **2**, **3** ($\Delta\delta$ +2.6) and the upfield shifts of the C-8 signal in **1**, **2**, **3** ($\Delta\delta$ -4.6, -4.5, -4.4) compared with **4** (δ 61.13 (C-10), 144.22 (C-8), CD_3OD) (Chaudhuri *et al.*, 1980). The (*E*)-configuration of the 7",8"- double bond in **1–3** was proved by the coupling constants $J = 16.0$ Hz (**1**) and $J = 15.9$ Hz (**2**, **3**). In case of a (*Z*)-configuration a coupling constant $J = 12.8$ Hz would be observed (Vesper and Seifert, 1994). The ^1H NMR spectra of **1–3** showed the characteristic aromatic proton signals in **1** of cinnamoyl moiety at δ 7.61 (H-2", H-6"), 7.40 (H-3", H-4", H-5"), in **2** of *p*-coumaroyl moiety at δ 7.48, d, $J = 8.5$ Hz (H-2", H-6"), 6.81, d, $J = 8.5$ Hz (H-3", H-5") and in **3** of caffeooyl moiety at δ 7.05, d, $J = 1.5$ Hz (H-2"), 6.78, d, $J = 8.1$ Hz (H-5"), 6.96, dd, $J = 8.1$ Hz, $J = 1.5$ Hz (H-6").

Geniposidic acid (**4**) shows interesting biological activities. Intraperitoneal administration of **4** to mice led to a dose-dependently decrease of the growth of implanted tumor ascites cells (Hsu *et al.*,

Table 1. ^1H NMR spectral data of the iridoids **1–3** in CD_3OD .

C	1	2	3
1	5.19, d, $J = 7.9$ Hz	5.19, d, $J = 7.8$ Hz	5.19, d, $J = 7.7$ Hz
3	7.53 br.s	7.53 br.s	7.53 br.s
5	3.20 m	3.20 m	3.21 m
6	2.15/2.88	2.15/2.87	2.16/2.88
7	5.90	5.89	5.88
9	2.79 m	2.79 m	2.78 m
10	4.88/4.94, d, $J = 14.2$ Hz	4.87/4.94, d, $J = 14.2$ Hz	4.86/4.93, d, $J = 14.2$ Hz
1'	4.73, d, $J = 7.8$ Hz	4.74, d, $J = 7.8$ Hz	4.74, d, $J = 7.7$ Hz
2'	3.24	3.26	3.24
3'	3.39	3.38	3.39
4'	3.30	3.32	3.32
5'	3.30	3.31	3.30
6'	3.65/3.87	3.67/3.88	3.66/3.88
2"	7.61	7.48, d, $J = 8.5$ Hz	7.05, d, $J = 1.5$ Hz
3"	7.40	6.81, d, $J = 8.5$ Hz	
4"	7.40		
5"	7.40	6.81, d, $J = 8.5$ Hz	6.78, d, $J = 8.1$ Hz
6"	7.61	7.48, d, $J = 8.5$ Hz	6.96, dd, $J = 8.1$ Hz, $J = 1.5$ Hz
7"	7.72, d, $J = 16.0$ Hz	7.65, d, $J = 15.9$ Hz	7.58, d, $J = 15.9$ Hz
8"	6.57, d, $J = 16.0$ Hz	6.38, d, $J = 15.9$ Hz	6.30, d, $J = 15.9$ Hz

Table 2. ^{13}C NMR spectral data of the iridoids **1–3** and **5** in CD_3OD .

C	1	2	3	5
1	98.3	98.3	98.4	95.0
3	153.2	153.3	153.3	151.2
4	112.8	112.6	112.7	114.1
5	36.7	36.6	36.6	31.3
6	40.0	39.9	39.9	30.2
7	131.5	131.2	131.2	41.3
8	139.6	139.7	139.8	79.8
9	47.3	47.3	47.4	52.5
10	63.9	63.7	63.7	24.3
11	170.9	170.9	170.8	170.2
1'	100.5	100.5	100.5	97.7
2'	74.8	74.8	74.8	74.8
3'	77.9	77.9	77.9	75.9
4'	71.4	71.4	71.4	71.6
5'	78.4	78.3	78.4	78.5
6'	62.8	62.7	62.8	62.7
1"	135.7	127.1	127.8	135.8
2"	129.3	131.3	115.2	129.4
3"	130.0	116.8	147.2	129.9
4"	131.5	161.3	149.6	131.4
5"	130.0	116.8	116.5	129.9
6"	129.3	131.3	123.0	129.4
7"	146.5	146.8	146.8	146.5
8"	118.7	114.9	114.9	118.6
9"	168.4	169.1	169.1	167.5

1997). The collagen synthesis in false aged rats was stimulated by the administration of **4** (Li *et al.*, 1998). Geniposidic acid inhibited the elongation of coleoptiles of wheat embryos (Cameron *et al.*, 1984) and its methyl ester geniposide the growth of rice and lettuce seedlings (Komai *et al.*, 1990).

Experimental

General

Negative ion MS: MAT 8500 (Finnigan), matrix glycerol. NMR: 500.13 MHz (^1H) and 125.76 MHz (^{13}C), reverse probehead, δ in ppm, solvent CD_3OD , CD_3OD signals were used as int. standard (^1H : 3.30, ^{13}C : 49.0), temp. 290 K, HMQC: phase-sensitive using TPPI (Time Proportional Phase Increment), BIRD (Bilinear Rotation Decoupling) sequence, GARP decoupled, HMBC: using TPPI, delay to achieve long range couplings: 71 msec ($J_{\text{C},\text{H}} = 14$ Hz).

CC: silica gel (0.063–0.2 mm); TLC: silica gel (0.25 mm precoated plates 60 F254, Merck, the spots were sprayed with 10% H_2SO_4 in MeOH.

Isolation

A. marina was collected in 1999 near Hurghada Egypt and identified by Dr. M. Elgebaly from the National Research Centre (NRC) Cairo. A voucher specimen of the plant is deposited at the Herbarium of the NRC, Department of Chemosystematics. Dried powder of the whole plant of *A. marina* (3.0 kg) was exhaustively extracted with 80% MeOH (15 l) to give 70 g of crude material after evaporation of the solvent. The residue was successively partitioned between H_2O and petrol, H_2O and CHCl_3 and H_2O and *n*-BuOH. The butanolic fraction was evaporated under red. pressure at 45 °C to obtain a crude iridoid mixture (10 g). CC on silica gel eluting with CHCl_3 –MeOH– H_2O with increasing amounts of MeOH and H_2O afforded two main fractions **F**₁ (300 mg) and **F**₂ (200 mg). **F**₁ was subjected to MPLC (Medium Pressure Liquid Chromatography) using RP-18 material and eluting with MeOH– H_2O 13:7 v/v followed by Sephadex LH-20 chromatography eluting with MeOH– H_2O 17:3 v/v to give **1** (20 mg) and **5** (45 mg). MPLC of **F**₂ on silica gel eluting with CHCl_3 –MeOH– H_2O 9:3:0.5 v/v and CC on Sephadex LH-20 eluting with MeOH yielded **2** (12 mg) and **3** (15 mg).

Spectroscopic data

10-*O*-[(*E*)-cinnamoyl]-geniposidic acid (**1**): ($\text{C}_{25}\text{H}_{28}\text{O}_{11}$, *Mr* 504). LSI-MS negative ion mode *m/z* (rel. int.): 503 [$\text{M}-\text{H}$][–] (55), 341 [$\text{M}-\text{H}-\text{Glc}$][–] (3). ^1H NMR and ^{13}C NMR: Tables 1 and 2.

10-*O*-[(*E*)-*p*-coumaroyl]-geniposidic acid (**2**): ($\text{C}_{25}\text{H}_{28}\text{O}_{12}$, *Mr* 520). LSI-MS negative ion mode *m/z* (rel. int.): 519 [$\text{M}-\text{H}$][–] (87), 357 [$\text{M}-\text{H}-\text{Glc}$][–] (6). ^1H NMR and ^{13}C NMR: Tables 1 and 2.

10-*O*-[(*E*)-caffeooyl]-geniposidic acid (**3**): ($\text{C}_{25}\text{H}_{28}\text{O}_{13}$, *Mr* 536). LSI-MS negative ion mode *m/z* (rel. int.): 535 [$\text{M}-\text{H}$][–] (**4**), 373 [$\text{M}-\text{H}-\text{Glc}$][–] (**7**). ^1H NMR and ^{13}C NMR: Tables 1 and 2.

Acknowledgement

Support of this research by a grant of the Deutsche Forschungsgemeinschaft (Se 595/7-1 and 7-2) is gratefully acknowledged.

Bousquet-Melou A. and Fauvel M.-T. (1998), Inter-specific variation in the concentration of two iridoid glucosides in *Avicennia* L. (Avicenniaceae Endl.). *Biochem. System. Ecol.* **26**, 935–940.

Cameron D. W., Feutrell, G. I., Perlmutter P. and Sasse J. M. (1984), Iridoids of *Garrya elliptica* as plant growth inhibitors. *Phytochemistry* **23**, 533–535.

Chaudhuri R. K., Afifi-Yazar F. Ü. and Sticher O. (1980), ^{13}C NMR spectroscopy of naturally occurring iridoid glucosides and their acylated derivatives. *Tetrahedron* **36**, 2317–2326.

Everett J. (1994), New combinations in the genus *Avicennia*. *Telopea* **5**, 627–629.

Fauvel M.-T., Taoubi K., Gleye J. and Fouraste I. (1993), Phenylpropanoid glycosides from *Avicennia marina*. *Planta Med.* **59**, 387.

Hsu H.-Y., Yang J.-J., Lin S.-Y. and Lin C.-C. (1997), Comparisons of geniposidic acid and geniposide for antitumor action and radioprotection after sublethal irradiation. *Cancer Lett.* **113**, 31–37.

Komai K., Nakasugi T., Tujii I., Miura M. and Hamada M. (1990), Plant growth inhibitory activities of iridoid glucosides. *Zasso Kenkyu* **35**, 44–52.

König G. and Rimpler H. (1985), Iridoid glucosides in *Avicennia marina*. *Phytochemistry* **24**, 1245–1248.

Li Y., Sato T., Metori K., Koike K., Che Q.-M. and Takahashi S. (1998), The promoting effects of geniposidic acid and aucubin from *Eucommia ulmoides* Oliver leaves on collagen synthesis. *Biol. Pharm. Bull.* **21**, 1306–1310.

Sharaf M., El-Ansari M. A. and Saleh N. A. M. (2000), New flavonoids from *Avicennia marina*. *Fitoterapia* **71**, 274–277.

Vesper T. and Seifert K. (1994), Iridoids and other glucosides from *Penstemon acuminatus*. *Phytochemistry* **37**, 1087–1089.